The Game Chromatic Index of Forests of Maximum Degree 5

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Game Chromatic Index of Forests of Maximum Degree 5

Using a refinement of the methods of Erdös et al. [6] we prove that the game chromatic index of forests of maximum node degree 5 is at most 6. This improves the previously known upper bound 7 for this parameter. The bound 6 is tight [6].

متن کامل

Chromatic index, treewidth and maximum degree

We conjecture that any graphG with treewidth k and maximum degree ∆(G) ≥ k + √ k satisfies χ′(G) = ∆(G). In support of the conjecture we prove its fractional version.

متن کامل

The chromatic index of graphs with large maximum degree

By Vizing’s theorem, the chromatic index x’(G) of a simple graph G satisfies d(G) Li 1 V(G)1 J + ir, where r is the number of vertices of maximum degree. A graph G is critical if G is Class 2 and x’(H) < x’(G) for all prop...

متن کامل

The game chromatic index of wheels

We prove that the game chromatic index of n-wheels is n for n ≥ 6. © 2010 Elsevier B.V. All rights reserved.

متن کامل

The chromatic index of a graph whose core has maximum degree two

Let G be a graph. The core of G, denoted by G∆, is the subgraph of G induced by the vertices of degree ∆(G), where ∆(G) denotes the maximum degree of G. A k-edge coloring of G is a function f : E(G)→ L such that |L| = k and f(e1) 6= f(e2) for all two adjacent edges e1 and e2 of G. The chromatic index of G, denoted by χ′(G), is the minimum number k for which G has a k-edge coloring. A graph G is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Discrete Mathematics

سال: 2003

ISSN: 1571-0653

DOI: 10.1016/s1571-0653(04)00425-1